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The phenomenon of the boundary layer which occurs when plates are joined is studied. A procedure for deriving the asymptotically 
exact joining (transmission) conditions which associate the two-dimensional equations for the deformation of the plates along 
the joining line F is deve]toped using the method of matched asymptotic expansions. Two situations are discussed in which these 
conditions turn out to be non-standard: the bending moment in F must disappear and the deflection can undergo a jump (for 
real values of the physical parameters, the longitudinal displacements and forces as well as the bending and the shearing force 
always remain continuous). One of the situations (the joining of "thick, soft" and a "thin, rigid" shells) is characteristic of a moving 
loudspeaker system. The results of a numerical experiment, which confirm the asymptotic analysis of the problem, are presented. 
@ 1998 Elsevier Science Ltd. All rights reserved. 

It is well known [1-5, etc.] that the phenomenon of an exponential boundary layer (BL) arises close to 
the edge of a thin three-dimensional plate or shell. This phenomenon can be neglected [6-8, etc.] when 
determining the leading terms of the asymptotic form far from the edge, but this cannot be done [1, 
9-11, etc.] without an analysis of the BL when effects requiring the lower asymptotic terms to be taken 
into account are of interest. Using the method of combined asymptotic expansions, the natural require- 
ment of the decay of the boundary layer generates asymptotically exact boundary conditions for the 
(two-dimensional) system of equations in the theory of shells. 

Similar phenomena also occur when some kinds of defects (a welded seam, a rigidity rib, the butting 
of plates, etc.) are located in a small neighbourhood of the contour F in the middle surface of a plate 
or shell. In this case, an exponential form of the decay of the BL is ensured by the joining (transmission) 
conditions on the c, ontour F [12-14, etc.]. Usually, the joining conditions include the continuity of the 
transverse and lon?itudinal displacements and of the shearing and longitudinal forces as well as of the 
deflection and the bending moment. However, if the defect is characterized by new small parameters 
(in addition to the relative thickness h of the plate) then, under certain situations, an asymptotic analysis 
of the boundary layer can lead to non-standard joining conditions and this effect is traced below in the 
case of a number of problems concerning the butt joining of plates. 

The solutions of problems in the theory of elasticity in a strip and in the joining of half-strips are 
studied in Section 1 on the basis of general results [14]. A procedure for deriving the joining conditions 
which uses the method of matched asymptotic expansions (MAE) is discussed in Section 2. The joining 
conditions which are obtained contain a certain symmetric (4 x 4) matrix M which is an integral 
characteristic of tile joining zone. In cases when the elements Mjk are continuously dependent on the 
additional parameters al . . . .  , aN, the standard joining conditions are found to be asymptotically exact. 
If, however, the ldj~ increase in an unbounded manner when 0~i ~ +0 then non-standard joining 
conditions can rise for certain relations between cti and h. Two real problems are considered in 
Sections 3 and 4: a plate with an almost continuous crack (the small parameter is the relative thickness 
of the thin bridge) and the joining of "rigid, thin" and "soft, thick" plates (the parameters are the ratios 
of the thicknesse,; and the Young's moduli). Finally, in Section 5, the results of calculations of the 
spectrum of freqttencies of electrodynamic loudspeakers are presented; it is only possible to achieve 
acceptable agreement with the experimental data using asymptotically exact non-standard joining 
conditions. 
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1. THE MODEL BOUNDARY-LAYER PROBLEM 

Suppose that 17 = (-4/2,1/2) x R is a strip made of a homogeneous, isotropic, elastic material with Lam6 
coefficients ~ and ix. We consider the plane and antiplane problems of the theory of elasticity 

~tV. VV'(x) + (~, + ~t)VV. V'(x) = O, x ~ I-I 

(1.1) 12(V ;xl"J'l/2)-ei22(V ;xl, +l /2):O, x I ~ l i  

t . tV'V~(x)=0,  x~I-l; p.(OV3/Ox2)(xl ,+l l2)=O, x l ~ R  (1.2) 

V' = (V1, I/2) and I/3 are the displacements and 6(V') = (c/k(V')) is the two-dimensional stress tensor. 
We shall find a basis in the space of polynomial solutions of problem (1.1), (1.2) 

V l ' ( x ) = ( - x 2 ' x t ) '  Vz'=(0'I) '  vY=(I '0) '  V34=1 (1.3) 

x~ ~, x 2 - 12 ll~.+121x] 

V 6 ' ( x ) = l ( x 2  3Z,+4gx 3 llZ,+lZ~t/2 xl 
DL-2 -xi ~,+2~t 6 ~,+2~t 4o 

_ x ~ _  )~:l (x22 l 2") ll)~+12l.tl2X 2] 
6 ~,+2~[, 2 -2"4")+" ~,+2lX 6"0) (1.4) 

l 2 ( ~r 2 "~ 
V7"(x)=l ' i '~ tx , , -~+~),  V38(X)=~, D=I I I  3 ~+......_..~ 

3 ~,+2~ 

The components of the vectors lfi = (V/', V~), which have been omitted from (1.3) and (1.4), are 
equal to zero. Formulae (1.3) contain the rigid displacements, while the quantities in (1.4) generate 
the bending moment, the shearing force and the longitudinal forces, respectively. 

Suppose that f~ is a composite plane body which, outside a certain circle BR = {xl :Ix I < R}, coincides 
with the union of the half-strips 17+ = (-4+/2,1+/2) x (0, +oo) and 17_ = (-1_/2,1_/2) x (--oo, 0) which are 
made of materials with Lam6 constants ~.+, Ix+ and L_, It_, respectively. We shall denote the vectors 
defined by formulae (1.4), in which the symbols ~., ix, l andD are given ± subscripts, by V~ = (V~, V~3 ). 
. We consider the solutions u = (u', u3) of a homogeneous problem in the theory of elasticity in the 

domain ~. The number of linearly independent solutions which possess an exponential growth at infinity 
is equal to eight (half of the product of the number of "exists" from the domain to infinity and the number 
of analogous solutions of the problem in a strip (see [14, Chapter 5]). Four of these solution are trivial 
They are the rigid displacements V i . . . .  , V 4 from (1 3) The further four solutions u 1 _4 . . . .  i, , ~  
t~y the expansions • • , . . . ,  u . . . .  ~ . . . . .  

v k(x)  = V_4+k(x)+o(exp(8_xl)) ' xl ~ --~ 

4 ( 1 . 5 )  
V/~(X) = V4+k(X)+ ~' Ml:jVJ(x)+o(exp(_8+x,)) ,  xl --~ 

j=l 

Here, 6± > 0 are small numbers, rn = (Msk) is a partitioned (4 x 4) matrix which depends on the 
data for the problem (on f~, 3,+, ix_+ and other data). The matrix M can be interpreted as an integral 
characteristic of an elastic bodywhich is analogous to the virtual mass tensor [15], the elastic polarization 
matrix [16], etc. We emphasize that, in the case of dimensionless xi and li, the quantities Mjk , by (1.3) 
and (1.4), have dimensions which are the inverse of the dimension of Young's modulus. It can be shown 
by checking that the matrix M is symmetric. 
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2. D E T E R M I N A T I O N  OF THE J O I N I N G  C O N D I T I O N S  

Suppose that a plate Qh is formed by joining the two strip plates Q~ = (y, z) e R 3 :l z l< hl±, 14+_ > 
---Yl > Rh, Y2 ~ R} and that it is rigidly clamped at the edges. It is convenient to describe the structure 
of the joint using the "fast" variablesx = (xbx2) wherexl = h-lyl,x2 = h-lz. We shall assume that after 
changing to x coordinates, the cross-sections {(y, z) ~ Qh : Y2 = const} of the plate are transformed 
into the domain f~ from Section 1. The magnitude of H --- H+ + H_ is reduced to unity by sealing. All 
of the linear parameters of the problem then become dimensionless. It is assumed that H±, l±, R >> h. 
Finally, we assume that the stressed state of the plate is independent of y2. 

It is well known [1-13, etc.] that far from the edges of the plates Q~, the solution of the three- 
dimensional problem of the theory of elasticity in Qh is represented as an asymptotic series with a complex 
structure of the general term. The main approximation to the three-dimensional displacement field in 
a plate has the form 

N3  2¢~-1 aku~ 
h ~, h k-'cj (yl)~ (t:'j)(z'~ (2.1) 

We will now explain the notation used in (2.1). The exponent N in the normalizing factor h 'v is deter- 
mined by the order (with respect to h) of the external loads and, moreover, % x2 = 1, x3 = 2. The vectors 
htU-lu ±' = hN-l(u~, u~) (the principal parts of the longitudinal displacements) satisfy a system of 
Lain6 equations which describes the generalized plane stressed state and the functions hU-2ug (the 
principal parts of the deflections of the plates Q ~  are the solutions of Germain's equations. Finally 

dO (O'j) = e j ,  j = 1, 2, 3 

• O'D(Z) =-~, (~ ,+2p)- Ize 3, • 0''~) = O, ~O'3)(Z)=-ze I 

tpO,3)(z) [ ~, ( z  2 12) 13 ll~.+12P]ea 
:L -757 tT- ) 6o j 

tl)(3,3)(z)=p.3~,+4P. Z 3 llJk+121.t/2 Z Li 
L 6 

(2.2) 

Here e s is the unit vector in R 3 and the superscripts +_ are omitted. We recall a fact established in 
[4, Section 6] and [14, Section 5.6] that the set of linear combinations of vectors (1.3) and (1.4) is identical 
to a linear shell which has been stretched over the vectors 

• k . 

U(t'~)(x) = ~, lx~t~ft-q'J)(x2), j=1,2,3;  k--O ..... 2'Cj-I  
q=O q! 

(2.3) 

To fix our ideas, we fix N = 1 in (2.1) and change to x variables. Expanding u 7 in Taylor series and 
taking account of what has been said concerning the sets (1.3), (1.4) and (2.3), we see that expressions 
(2.1) are equal to the sums 

4 

~, (a~W'(x)+ B~ ±V.~4+n (x)) (2.4) 
n=! 

apart from quantities of smaller orders of magnitude, where 

a~=alu~:(O), a~ffih-iu~:(O), a~=u~(O), a~:ffiu~(O) (2.5) 

b?=hn a2u CO), 
b~ ffi 1217.:2hD±a2u~(O), b4 ~ = ~l.t±hatu~(O) 

(2.6) 



256 I.A. Aldoshina and S. A. Nazarov 

The coefficients from (2.4) (which are functions of the parameter h) have the following physical 
meaning: the deflection, bending and longitudinal displacements on the edge of the plates are given 
in (2.5), and the bending moment and the shearing and longitudinal forces are given in (2.6). The reduced 
(h = 1) cylindrical stiffnesses D± are used. 

In accordance with the algorithm for constructing the asymptotic form of the solutions of elliptic 
boundary-value problems in thin domains, terms of different orders in the parameter h have to be 
included in the principal asymptotic term (2.1). The lowest terms in the series for the solution of the 
three-dimensional problem also possess a similar structure. The subsequent discussion can therefore 
also be adapted to find the (now inhomogeneous) joining conditions in problems for the lowest terms. 

The number of assumptions which have been made at the beginning of this section do not affect the 
gist of the matter. Suppose, for example, that the functions u 7 depend on the variabley2. On changing 
to x coordinates, the scale of y2 is unchanged. The "slow" variable Y2 therefore becomes a parameter 
of the boundary-layer problem and the dependence ofu ± ony2 thereby only manifests itself in the lowest 
terms of the asym.~totic series. If, however, the plates are joined along the curve F, the "fast" variables 
xl = h- n, x2 = h- z are determined using the local coordinates (n, s), where s is the length of an arc 
in F and I n [ is the distance to F. The variable s now turns out to be the "slow" variable instead of y2. 
It is clear that formula (3.6) for the moments and the forces has to be modified in both cases, but this 
has no effect on the matching procedure presented below. 

The solution of the three-dirn_ensional problem in O h is only approximated by the sum (2.1) at a distance 
from the edges of the plates Q~, and the boundary-layer (BL) phenomenon arises close to these edges. 
The method of combined asymptotic expansions is usually employed in the theory of shells and plates 
[1-5, 9-13, etc.] In this method, as in the Vishik-Lyusternik method [17], a solution of the boundary- 
layer type, which decays exponentially on moving away from the edges and which serves, in particular, 
to remove any discrepancies remaining in the boundary conditions on the side surfaces of the plates, is 
added to the smooth type of solution (3.1). In the case of the joining of plates, which is considered here, 
a solution of the boundary-layer type is found from the problem in the domain f~ (Section 1). However, 
such a problem cannot always be solved in the class of vector functions which disappear at infinity. It is 
well known (e.g. see [14, Chapter 5]) that the conditions for the solution to decay at infinity are equivalent 
to the eight equalities which ensure the orthogonality (in the sense of Betti's formula) of the right-hand 

1 1 4 sides of the problem to the fields V,  u . . . . .  V 4, u (see (1.5)). Actually, these eight equalities also constitute 
the required joining conditions which close the equations which the functions u 7 from (2.1) satisfy. 

The method of matched asymptotic expansions (MAE), which we shall use to find the matching 
conditions, due to its great convenience, serves as an alternative to the method which has been described. 
In the MAE method, a new, inner expansion of the solution of the three-dimensional problem is sought 
in a small neighbourhood of the edges of the plates (we stress that, in the preceding boundary-layer 
approach, this was added to a smooth type of solution). As in the boundary-layer approach, the inner 
expansion is described by the solution V of the problem in fL However, now, the requirement of expone- 
ntial decay at infinity is not imposed on V. A matching condition arises instead of this: the polynomial 
terms in the asymptotic forms of the field V(x) whenxl ~ __.oo are identical to expressions (2.4). We now 
turn our attention to the fact that both expansions, the outer expansion (2.1) and the inner expansion 
V(x), correspond to the same three-dimensional field and they must therefore be the same, apart from 
the lowest terms in a certain "intermediate zone" ch -In < Ix1 I< Ch -1/2 (or, what is the same thing, ch in 
< l Yl I < Chl/2) • In the MAlE method, this coincidence is also ensured using the matching conditions. 

We now construct the solution V of the homogeneous problem in the domain f2 for which the 
quantities (2.4) turn out to be the asymptotic form whenxl ~ _.+ oo. Initially, we consider the "left" infinity 
(xl ~ -oo). On recalling what was said in Section 1 and taking account of (1.3)-(1.5), we conclude that 
the linear combination is the natural candidate for the role of the required solution. 

4 
V(x) = Z (a-~Vn(x) + by v "(x)) (2.7) 

n=l  

Now, suppose that xl ~ +oo and that the superscript "+"  in (2.4) is fixed. Returning to the second 
relation in (2.5) and denoting the exponentially small terms by dots, we see that 

4 +"(x) M.~ + . . .  = V(x)= Z a~V"(x)+ +Y. VJ(x) 
n=l  j = l  

= Z b-nV+4+n(x) + Z a'~ + Z Vi(x)  ".. (2.8) 
n=l  j = l  n--I 
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Once again, we make use of the matching conditions and note that the expression which has been 
separated out on the :fight-hand side of (2.8) is the same as the quantity (2.4), where the superscript 
" + "  is only taken when eight relations are satisfied. We write these relations in the vector form 

a ÷ = a- +Mb-- (2.9) 

b- = b + (2.10) 

Here, a ± and b ± are four-dimensional columns, consisting of the quantities (2.5) and (2.6), and M 
is the (4 x 4) matrix of the coefficients of expansions (1.5). Equation (2.1) indicates the continuity of 
the forces and the moment mentioned in the comment on formulae (2.6) and is the first group of natural 
joining conditions. Moreover, it appears that relation (2.9) is to be interpreted as the conditions for 
elastic sealing. However, terms of different orders of smallness occur in term (2.1) of the asymptotic 
series which has been separated out and, what is more, the columns a ±, b ± contain heterogeneous ele- 
ments. An additional asymptotic analysis is therefore required when setting up the second group of 
joining conditions. 

We assume that it is possible to eliminate the small parameter completely on changing to the model 
problem in fL The matrix M is then independent of h and, by virtue of (2.5) and (2.6), the components 
of the column Mb- ate infinitely small when h ~ 0, and the components of the columns a -  are equal 
to O(1) or O(h-1). It is therefore necessary to discard the last term in (2.9) to obtain the second group 
of joining conditions which express the continuity of the displacements and the deflection 

a + = a- (2.11) 

When some of the elements of the matrix M turn out to be large (it is not possible to get rid of the 
parameters in the model problem), the last term in (2.9) may cease to be small and the limit joining 
conditions obtained from (2.8) may differ from (2.11). Two such situations are considered in the next 
two sections. 

3. T R A N S V E R S E  CRACKS IN A PLATE 

We will now consider a plate with two symmetric transverse surface notches between which there is 
a thin connecting bridge of width 2eh. We now refer to the notation from Section 1 and put l = l± = 
1, K± = ~., g± = ~t and 

= l-lXlx: xl = 0, Ixzl > e} (3.1) 

We shall assume thai: e is a small parameter and find the asymptotic forms of the elements of the matrix 
M = M(e). Algorithms for constructing the asymptotic expansions of the solutions of problems in 
domains with thin ligaments have been fully developed [18-22, etc.]. 

We shall only present the final formulae with comments. 
The asymptotic forra (when a ~ +0) of the solutions (1.5) of the problem in the domain f~ = f~(e), and this 

also means the asymptotic form of the matrixM(e), are sought using the MAE method and constructed from special 
solutions of the problems in the limiting domains (the existing of the necessary solutions follows, for example, from 
the general results in [14]). We obtain the first two limiting domains 17_+ (half-strips) by putting e = 0 in (3.1). 
Yet another limiting domain _= = R2\{q e R2: r h = 0, I r12 I >1 1} (a plane with a pair of semi-infinite cuts) 
arises after changing to the new "fast" variables rl = e-ix an~ then, to a zero value of the parameter ~. 

We will first give the required solutions of the problem in N. The two linear vector functions I:'(11) = (rh, -Z.Q. 
+ 2g)-lrl2, 0) and Vq(rl) = (0, 0, rh), corresponding to uniaxial loads along the notches, are added to the rigid 
displacements V 1 . . . . .  V 4. Furthermore, six non-polynomial solutions arise which are determined by their 
behaviour when I rl I --> oo in the half-planes R2_+ = {rl: ---ql > 0} 

YJ('Q) = +VJ('q)+O(1) (j  ---1,0,1) (3.2) 

yk (.q) = :I:T k (11) + O(1) (k = 2,3, 4) 

Tk (1"1) = Yk Vk In I ~ I +T k° (I 111-1 q) 

72 = 73 = (~. + 3g)[2~g(~. + 2g)l -t, 74 = 0tl.t) -I 

(3.3) 
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The displacement fields (3.3) describe the deformation F. by the differently directed forces at infinity ( :  are 
the solutions of the Flaman problem on point forces on the boundary of a half-plane). Yet another solution I,'1 
corresponds to the moments _+~ra applied to Re_. at infinity. Explicit formulae can be written out for lm which, in 
particular, enable one to refine expansions (3.2) and (3.3), by replacing O(1) by the residues O(I rl 1-2) and with 
linear combinations of the vectors V 2, V 3, V 4 and T -1 = -~31T 4, T O = -~IT z, T 1 = -t~lT3(tgl = ~/~1]1 ).  Only 
the inequality pm> 0 is subsequently necessary. 

Apart from the rigid displacements V 1 . . . . .  V 4, the displacement fields generated by the concentrated actions 
L~(x) at the point x = 0 serve as special solutions Zq(q = -1 . . . . .  4) of the problems in I7÷. The vectors Z_~ 1 and 

decay exponentially when [xl I ~ oo. The point forces (q = 2, 3, 4) and the moment (~/= 1) are balanced by 
the load at infinity; in other words, the representations 

~(x) = V*~(x) + o(exp(-X-8,x0), xl ~ ±00 

which are similar to (1.5), are satisfied. 

The asymptotic form of the coefficients Mkj(e) in formulae (1.5) is found after applying the matching 
procedure in the zone Ix I = O(e 1/2) (or [ 11 { = O(e-1/2)) 

Mil (e) = 2g-2p--tm -l + O(~t-18 -t I In e I) 

Mmn(e) = 2~im.ny~ I ln•l+O(la -l) (n,m = 2,3,4) (3.4) 

MI2(E) = M2z(e) = O(Ix-le-l), Mlt,(e) = Mt, l(e) = 0 (p = 3,4) 

So, the diagonal elements of the matrix M(e) increase without limit when e ~ +0. 
Suppose that e ~ h 1/2 and ~ >> exp(-h-1). Then, by (2.5), (2.6) and (3.4), the quantity MH(e)b{ pre- 

dominates in the first row of system (2,9) and all the remaining terms are infinitely small compared 
with it. We transform this row into the equality bi- = 0 which, together with (2.6) and (2.10), leads to 
the formulae 

O+~2u~(0)=0, O_02u;(0)=0 (3.5) 

The remaining rows in (2.9) and (2.10) generate the joining conditions 

121~2o+~lu~(O) = 12/S2D_o~lui"(0) 

l+P.+Olu~(O) =/_~t_0tu2(0) (3.6) 

O+~3u~(0) = D_O3u3(0), u;(0)--  uT(0 ) (j = 1,2,3) 

According to the assumption D._ = D, 1+_ = I and ~t± = ~t, that is, the coefficients of the derivatives 
can be abbreviated. Conditions (3.5) and (3.6) mean that the displacements and forces are continuous, 
the bending moment is equal to zero along the line of the butt joint and the deflection can undergo a 
jump. 

Now, suppose that the parameters e and h I/2 are comparable in magnitude, that is, the equality e = 
e0 hl/2, with a multiplier e0 of the order of unity, holds. In view of the symmetry of the domain l)(e), we 
have Mlp(e) = Mpl(e) = 0 (p = 3, 4). Relations (3.6), which are complemented by the equalities 

~2u.~(0)- ~2u.~ (0) = o 

02U;(0) + ~2U3(0) = 2e21aD-~m(0~u~'(0) - OJuj(0))  (3.7) 

therefore follow from (2.9) and (2.10). 
Consequently, the bending moment is continuous along the line of the butt joint and a condition 

which is similar to elastic sealing is satisfied. 
The asymptotically exact joining conditions (3.6), (3.5) and (3.6), (3.7) allow of a discontinuity in the 

deflection. The occurrence of discontinuities in the displacements is due to the quantities M,,,,(e) from 
(3.4) which have a weak logarithmic growth and become quite large in the case of improbably small 
values of the parameter e. Finally, according to (3.4), (2.5) and (2.6) when h 1/2 >> e, it is necessary to 
discard the last term in (2.9) to arrive at the standard joining conditions (2.10) and (2.11). 
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In treating the problem in f~, the possibility of contact between the edges of the cracks was not taken 
into account. This flaw in the linear formulation of the problem does not arise in the case of angular 
notches or defects of other types which form thin connecting ligaments with the dimensions of e and 
h in the plate. In this case, it follows from [19, 23] that the relation is preserved and this means that 
the conclusions regarding joining conditions (3.5)-(3.7) still hold. 

4. T H E  J O I N I N G  OF PLATES OF D I F F E R E N T  T H I C K N E S S  

Suppose that l_ = 1, l+ = ~ and ~(e) = I-I_ U H+(e), where l-l+(e) = (x e R2: Xl > 0, Ix2 1 < e/2}. 
The half-strips I-I_ and 1-I+(e) are made from homogeneous isotropic materials with Lam6 constants 
~._, ~t_ and L+, ~t+. Conditions of complete contact are specified at the butt joint {x: xl = 0, Ix21 < e/2}. 
We will find the asymptotically exact joining conditions assuming that e and x = ~t_/l~+ are small 
parameters (that is, the material of the "thin" plate Q~ is significantly more rigid than the material of 
the "thick" plate Q~). Without going into detail, we note that, when x = O(1) or x -> 1, the natural 
joining conditions turn out to be asymptotically exact. 

The interpretation of f~(e) as an articulation of singularly degenerate sets enables us to use a well known 
asymptotic procedure [8, 24--27, etc.] which, on the whole, remains the same as in Section 3 in spite of the divergence 
in the geometric description of the domain O(e) and the presence of an additional parameter z. The half-strips 
1-I± turn out to be the lirniting domains (17+ is obtained from I-l+(e) by changing to the fast variables 11). In the 
case of problems on the joining of bodies with differing elastic properties [8, 16, 23, 28, etc.], it is characteristic 
that there is a disruption of the contact conditions; in this case, the conditions in the displacements are inherited 
by the softer body. Yet another limiting domain therefore arises, that is, the half-plane _= = R 2 with restraint 
conditions at the site of lhe butt joint with the rigid half-plane H+. The sets of special solutions are analogous to 
those which have been indicated in Section 3; the sole change is the fact that formulae (3.2) and (3.3) are only 
written for rl e R2_, that is, when rh < 0. Then, it is only necessary that the quantity, occurring in the expansion 
of the solution Y~, ~t_rn > 0. It is equal to the moment which has to be applied at infinity to rotate the half-plane 
=-, which is fastened in the segment (rl: rh = 0, I r12 [ < 1/2}, through unit angle. 

After applying the matching procedure in the zone I x I = O(el/2), xl < 0 and taking account of the 
matching condition at the butt joint (x: xl = 0, I x2 1 < e/2}, the asymptotic form (when e, x ~ +0) of 
the solutions t~ k and of the coefficients Mjk(e, x) in their expansions (1.5) are found 

MII (E, '~) = £-21.t"lm-I + O(g-2'~l.I. "1 ) 

Mm, ,(£, x) = 5m,nT~ -) I In I~ I +O(xlx -t) 

Mi2(e,X) = M21 (e,x) = O(¢-ttX-_ l ) 

Mlq(e,x) = Mql(e,x) = 0 (q ~- 3,4) 

(m,n = 2,3,4) 

(4.1) 

The matrix elements M(e, z) 
conditions. 

We shall only consider the 
of the plates are comparable 

increase without limit when e ~ 0 which leads to non-standard joining 

most interesting case when x = O(e 3) in which the cylindrical stiffnesses 
in order of magnitude. By virtue of (5.1) and (2.6) 

b~ (h) = O(hg3l.t+)~2u~ (O)'= O(hl.t_)O2u3 (O) 

b{  (h) = O(hlx_)~2u 3 (0) 

Mll (e, x)b? (h) = O(e-2h)~2u~ (0) 

Consequently, as in Section 3, we conclude that, when h 1/2 ,> e ~> exp(-h-1), relations (2.9) and (2.10) 
generate the non-standard joining conditions (3.5) and (3.6). This fact can be confirmed by means of 
a mental experiment suggested by L. I. Slepyan. We consider the joining of two beams, one of which 
is a thin metal beam while the other is a thick rubber-like beam and both beams have their outer ends 
clamped. If the first beam is rotated around the centre of the joint, then the deformation of the second 
beam will be localized close to this centre (in view of the smallness of the contact area). Hence, in the 
case of the second beam, the longitudinal displacement and bending averaged over the thickness turn 
out to be zero, whic]a also corresponds to a jump in the deflection in the one-dimensional equations. 
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Fig. 1. 

At the same time any translational displacement of the right-hand beam leads to a global deformation 
of  the system. 

The same non-standard joining conditions (3.5), (3.6) also arise when D+ >> D_, exp(-h -1) "~ e '~ 
1/2 ct 1/(¢t 1) h . When • = O(e ), a e (1, 3) (that is, e ~ h - ), non-standard joining conditions are only possible 

when further constraints are imposed on the smallness of e: the requirement • = O(ea), ~t ~ (1, 3) must 
be satisfied. Finally, if 3 =  O(e a) and a e (0, 1), then the standard conditions (2.10) and (2.11) always 
appear. 

5.  A N U M E R I C A L  E X P E R I M E N T  

The conventional moving system of a loudspeaker (shown in Fig. 1 where 1 is an acoustic coil, 2 is an acoustic 
coil (a cylinder), 3 is a cap, 4 is a diffuser and 5 is a suspension device) is a combination of shells of rotation with 
strongly differing physicomechanical properties. As a rule, the thicker suspension devices are made of "soft" 
materials (vulcanized rubber, fabrics, membranes, etc.) while the diffusers are made of "rigid" materials (paper, 
synthetic membranes, foil, etc.) In this case, the differences in the thicknesses and the Young's moduli can reach 
values of two and four orders of magnitude respectively. 

The following computational scheme has been used in numerous papers (see [29, 30], for example) dealing with 
the calculation of the natural frequency spectra of loudspeakers: the two dimensional equations of shell theory 
are solved taking account of the continuity of the displacements and rotations using some numerical method. No 
such calculations have revealed the low-frequency components of the spectra which are experimentally detected 
in all types of loudspeakers. Moreover, changing to non-standard joining conditions (dropping the requirement 
that the angles of rotation should be continuous) we were able to calculate the spectrum of actual loudspeaker 
constructions using a software package [31] and ensure acceptable agreement between the results and the 

Table 1 

Element of 
moving 
system 

Young's 
modulus 
N/m 2 

I. 1 x 101° 3.83 

3.0xlO 9 0.85 

3.87x 10 a 1.636 

1.7x 109 1.819 

1.56 × I 0 ? 2.375 

Density 
kg/m2 x 10 

Thickness 
mm 

0.95 

0.16 

0.6 

0.6 

0.8 

Poisson's 
ratio 

0.3 

0.3 

0.3 

0.3 

0.4 

Natural frequencies 

A B 

39 331 

320 75 I 

627 1402 

1007 1495 

1418 2006 

1596 2056 

1860 

2073 
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experimental data. The characteristics of one of the constructions are collected together in Table 1 (the numbers  
of the elements correspond to those shown in the figure). This table shows the first terms of the sequences of natural  
frequencies calculated taking account of a discontinuity (A) and continuity (B) in the angles of rotation, 

The experimental determinat ion of the resonances of this moving system, carried out by measuring the modulus 
of the total electrical impedance, accurately separates out several of the first resonances at 36 Hz, 630 Hz, etc., 
which corresponds to the calculated values of the lowest natural  frequencies (A). The results presented in column 
B give a very high frequency for the first resonance. As would be expected, the type of joining conditions has a 
weak effect on the results of the calculation of the higher natural frequencies. 
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